AD-A091 644

ARYLAND UNIV COLLEGE PARK COMPUTER VISION LAB

A UNILATERAL REPRESENTATION FOR AUTOREGRESSIVE RANDOM FIELD MOD-ETC(U)

BY AFOSR-77-3271

AFOSR-77-3271

AFOSR-77-3271

NL

AFOSR-77-3271

NL

AFOSR-77-3271

NL

AFOSR-77-3271

NL

AFOSR-77-3271

AFOSR-77-3271

NL

AFOSR-77-3271

AFOSR-77-3271

NL

AFOSR-77

AFOSR-TR- 80 - 1153

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

CELECTE CO.

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND
20742

80 11 06 Miles

(1-11)

September 1986

A UNILATERAL REPRESENTATION FOR AUTOREGRESSIVE BANDOM FIELD MODELS,

(10) P. R. Thrift)
Computer Vision Laboratory Computer Science Center University of Maryland College Park, MD 20742

(9/11. · · · · · · · · · · ·)

(10)

ABSTRACT

This paper discusses autoregressive random field (ARF) models and derives a unilateral representation driven by uncorrelated noise.

(1) white CAArosh J

page - A -

The support of the U.S. Air Force Office of Scientific Research under Grant AFOSR-77-3271 is gratefully acknowledged, as is the help of Kathryn Riley in preparing this paper.

> AIR FORCE CONTINUOF SCHUNTIFIC RESEARCH (AFSC) COLUMN TATES TO THE COLUMN TO

of this accurreviewed and is Of 200000 to teless IAV AFR 190-12 (7b). Districution to multimated.

1. D. DE03.1

"mehnical Information Officer

JOB

4/1/674

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER	
AFOSR TR- 80-1153 AD- AD- AD- 444	
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
A UNILATERAL REPRESENTATION FOR AUTOREGRESSIVE RANDOM FIELD MODELS	Interim
	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(s)
P. R. Thrift	AFOSR 77–3271
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
University of Maryland	
Computer Science Center Ccllege Park, Md. 20742	61102F 2304/A2
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Air Force Office of Scientific Research	September 1980
Bolling AFB, Washington, DC 20332	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	154. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	<u></u>
Approved for public release; distribution unlimited.	
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report)	
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
Image processing Pattern Recognition Random fields	
autogressive models	
20. ABSTRACT (Continue on reverse side it necessary and identity by block number)	
This paper discusses autogressive random field (ARF) models and derives a unilateral representation driven by uncorrelated noise.	

1. Introduction

In this paper we shall deal with a subset of stationary (wide sense) processes with absolutely continuous spectral distributions which are rational functions of the two quantities $e^{i\theta_1}$, $e^{i\theta_2}$. More precisely we shall study the process $X_{[m,n]} \in \mathbb{R}^d$, $[m,n] \in \mathbb{Z} \times \mathbb{Z}$ on an infinite lattice, with covariance structure

$$E(X_{[m+s,n+t]}^{X*}_{[m,n]}) = \frac{1}{4\pi^{2}} \int_{-\pi-\pi}^{\pi} e^{-is\theta} e^{-it\theta} 2_{f(\theta_{1},\theta_{2})} d\theta_{1} d\theta_{2}, \qquad (1.1)$$

and zero mean.

We assume $f(\theta_1,\theta_2)^{-1}$ exists and is finite at every (θ_1,θ_2) , and

$$f(\theta_{1},\theta_{2})^{-1} = (a_{[0,0]}^{+} \sum_{[m_{1},m_{2}] \in \mathbb{N}^{P}} a_{[m_{1},m_{2}]} \cos(m,\theta,+m_{2}\theta_{2}))$$
(1.2)

a = [0,0], $a = [m_1,m_2]$ are p x p matrices satisfying a = [s,t] a = [-s,-t]. V* is the complex conjugate transpose of the vector V. N^p denotes the deleted p x p neighborhood of [0,0], that is,

$$\{\,[m_1^{},m_2^{}]:|m_1^{}|\,{\leq}p,|m_2^{}|\,{\leq}p,[m_1^{},m_2^{}]\!\neq\![0,0]\,\}.$$

Models of this type have been used as models of texture images [1,2]. In the case where $X_{[.,.]}$ is a Gaussian process, it can be shown [3] that $X_{[.,.]}$ is a Gauss-Markov process with respect to N^p ; that is,

$$P^{-2b}(X_{[m,n]}|X_{[s,t]},[s,t]\neq[m,n]) =$$

$$Prob(X_{[m,n]}|X_{[s,t]},[s,t]\in[m,n]+N^{p})$$
(1.3)

In fact, the process with spectral density $f(\theta_1, \theta_2)$ satisfies the conditional model

$$E(X_{[m,n]}|X_{[s,t]},[s,t]\neq[m,n]) = -a_{[0,0]}^{-1}(\sum_{[m_1,m_2]\in\mathbb{N}^p}a_{[m_1,m_2]}X_{[m-m_1,n-m_2]})$$
(1.4)

Conditional models of this type have been found useful in the modeling of spatial patterns [7]. It is also known (see, for example, page 26 of [7]) that no <u>finite one-sided representation</u> for this model exists of the type (with S finite subset of $\mathbb{Z} \times \mathbb{Z}$)

$$^{b}[0,0]^{X}[m,n]^{+}[m_{1},m_{2}] \in s^{b}[m_{1},m_{2}]^{X}[m-m_{1},n-m_{2}]^{=Z}[m,n]$$

where $z_{[m,n]}$ is a process of uncorrelated noise.

The purpose of this paper is to show that the collection of spectral representations of the process $X_{[.,.]}$ along one of the coordinates is representable as a <u>one-sided</u> finite order "time series" model along the other coordinate. Thus, in this sense it is seen that all ARF's have a "causal" representation.

This method of producing a one-sided representation can be contrasted with the so-called NSHP (non-symmetric half plane) representation of [3] and [6].

2. A Unilateral Representation

We consider the process $X_{[...]}$ with spectral density

$$f(\theta_1, \theta_2) = [a_{[0,0]}^+ \sum_{[m_1, m_2] \in \mathbb{N}^p} a_{[m_1, m_2]} \cos(m_1 \theta_1 + m_2 \theta_2)]^{-1},$$
(2.1)

which is a p-th order autoregressive process.

Let $z=e^{-i\theta}$, w=e^{-i\theta}, and rewrite the above equality as

$$f(\theta_1, \theta_2)^{-1} = a_0(w) + a_1(w) z + ... + a_p(w) z^p$$

$$+a_1^*(w)z^{-1}+...+a_p^*(w)z^{-p}$$
.

For each fixed w we can consider $f(\theta_1, \theta_2)$ as a spectral density in θ_1 . We next produce a <u>causal factorization</u> of $f(\theta_1, \theta_2)$ in the form

$$f(\theta_{1}, \theta_{2})^{-1} = (2.2)$$

$$[c_{0}^{*}(w) + c_{1}^{*}(w) z^{-1} + ... + c_{p}^{*}(w) z^{-p}] [c_{0}^{*}(w) + c_{1}^{*}(w) z + ... + c_{p}^{*}(w) z^{p}],$$

where, for each w=e^{-i θ 2}, c₀(w)+c₁(w) ξ +...+c_p(w) ξ ^p has no roots inside and on the complex unit circle $|\xi|$ =1. ([4], page 65).

We next consider the spectral representation of the process $X_{\{\cdot,\cdot,\cdot\}}$ along the second coordinate:

$$X_{[n,m]} = \int_{-\pi}^{\pi} im\theta dY_{n}(\theta), \qquad (2.3)$$

where $Y_n(\theta)$ is the spectral representation of the process $X_{[n,\cdot]}$. ([5], page 481).

Next expand each of $c_0(w), \ldots, c_p(w)$ in a Fourier expansion

$$c_{j}(w) = \sum_{k=-\infty}^{\infty} e^{ik\theta} 2 \hat{c}_{[j,k]}.$$

Then ([4], page 61) the process satisfies the autoregression

$$\sum_{j=0}^{p} \sum_{k=-\infty}^{\infty} [j,k]^{X} [n-j,m+k]^{=Z} [n,m]$$
(2.4)

where $z_{[.,.]}$ is an uncorrelated white noise process. Let $w_n(\theta)$ be the spectral representation of the process $z_{[n,.]}$:

$$z_{[n,m]} = \int_{-\pi}^{\pi} e^{im\theta} dW_n(\theta). \qquad (2.5)$$

We conclude with the following

Theorem: Let $\{Y_n(\theta)\}$, $\{W_n(\theta)\}$ be the spectral representations of the processes defined above. They satisfy the stochastic differential equation

$$\sum_{k=0}^{p} c_k (e^{-i\theta}) dY_{n-k}(\theta) = dW_n(\theta)$$
 (2.6)

<u>Proof:</u> In the above autoregressive representation we substitute the spectral integrals and get (after combining terms)

$$\forall m: \int_{-\pi}^{\pi} \left\{ \sum_{j=0}^{p} \sum_{k=-\infty}^{\infty} \hat{c}_{[j,k]} e^{i(m+k)\theta} dY_{n-j}(\theta) - e^{im\theta} dW_{n}(\theta) \right\} = 0$$

Factoring out $e^{im\theta}$ we have

$$\forall m: \int_{-\pi}^{\pi} e^{im\theta} \{ \sum_{i=0}^{p} \hat{\sigma}_{j} (e^{-i\theta}) dY_{n-j} (\theta) - dW_{n} (\theta) \} = 0$$

As any continuous function $f(\theta)$, $\theta \in [-\pi, \pi)$ can be approximated in mean square by linear combinations of $e^{im\theta}$, the result follows.

3. The finite version.

The above calculation can be carried out in the case where we have a finite number of values

$$X_{[n,0]}, \dots X_{[n,M-1]}$$

in the vertical direction.

Let $\psi_M^{}=e^{2\pi i/M}$. The finite versions of the above spectral representations are as follows:

$$X_{[n,m]} = \sum_{k=0}^{M-1} \psi_{M}^{km} Y_{(n,k)}$$
 (3.1)

or

$$\Delta Y(n,k) = \frac{1}{M} \int_{j=0}^{M-1} \Psi_{M}^{-km} X_{[n,j]}.$$
 (3.2)

That is, $\Delta Y(n, \cdot)$ is the finite Fourier transform of the data $X_{[n,\cdot]}$. Similarly

$$\Delta W(n,k) = \frac{1}{M} \sum_{j=0}^{M-1} \psi_{M}^{-km} z_{[n,j]}.$$
 (3.3)

The finite analogue of the above Theorem is

concluding with

$$\sum_{j=0}^{p} b_{j} (\psi_{M}^{-k}) \Delta Y(n-j,k) = \Delta W(n,k).$$
(3.4)

References

- R. Chellappa, "Fitting Random Field Models to Images", TR-928, Computer Vision Laboratory, University of Maryland, College Park, Maryland, August, 1980.
- R. Chellappa, "On the Correlation Structure of Wearest Neighbor Random Field Models of Images", TR-912, Computer Vision Laboratory, University of Maryland, College Park, Maryland, July, 1980.
- 3. P. Thrift, "Autoregression in Homogeneous Gaussian Configurations", RPA-77, Division of Applied Mathematics, Brown University, Providence, Rhode Island, February 1979.
- 4. E. J. Hannan, <u>Multiple Time Series</u>, John Wiley and Sons, Inc., New York, 1970.
- 5. J. L. Doob, Stochastic Processes, John Wiley and Sons, Inc., New York, 1970.
- 6. J. W. Woods, "Markov Image Modeling", <u>Decision and Control</u>, (1976), pp. 596-600.
- 7. M. S. Bartlett, <u>The Statistical Analysis of Spatial Pattern</u>, Chapman and Hall, Ltd., London, 1975.